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Abstract. A two-dimensiona problem is investigated on the action of a concentrated force applied to the axis of
acircular cylindrical, dastic inclusion embedded in an elastic thick-walled tube. This is a generalization of an
indentation problem ininfinite space, previoudly studied by Noble and Hussain [4] and revised by Omar and Hassan
[5]. The problem is solved using afast numerical approximation technique and numerical results are presented that
allow us to evaluate the angle of contact and to establish a comparison with the case of embedding in an infinite
space.

1. Introduction

Among the static problems of the Theory of Elasticity that have numerous applications in
Engineering, the indentation problem is one of the most interesting. Due to its complexity,
this problem can be solved exactly only in very few specia cases and numerically in general
cases [1]. The main difficulty in dealing with such problems arises from the fact that the
contact region isnot known a priori. For cylindrical regions of simple geometry, thisamounts
to saying that the contact angle is among the unknowns of the problem. Special methods
were put forward to deal with, and to solve indentation problems ([2], and the literature cited
therein), [3].

In their paper [4], Noble and Hussain reduce the problem of the inclusion of an infinite
circular cylinder in an infinite space to that of solving an airfoil integral equation, under the
constraint that the el astic parameters of the media satisfy a certain relation. The same problem
was treated by Omar and Hassan [5] who used a simpler technique to solve the dual series
equations to which the problem was reduced in the general case. They showed, in particular,
that sufficiently accurate results may be obtained from the first few iterations of their solution
without need to transform to the integral equation.

Theproblemis solved following the sametechniqueasusedin 5] and numerical resultsare
given and discussed for the angle of contact between the inclusion and the tube. Comparison
is established with the case of embedding in an infinite space. In particular, it is shown that
the present results are the same as the corresponding ones in [5] when the shear modulus of
the inclusion is much smaller than that of the outer medium.

2. Formulation of the problem

An infinite, isotropic, elastic circular thick-walled tube of radii a, b(a < b) has an inclusion
in the form of an infinite circular cylinder of radius « of another isotropic elastic material
(see Fig. 1). A concentrated force F' per unit length acts on the axis of the cylinder and
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Figure 1. Geometry of the problem.

perpendicular to it. Accordingly, a separation region is established in the stressed medium,
the end points of which need to be determined. It is well known that this problem reduces to
the solution of a biharmonic equation for the stress function under proper conditions. Thisis
further reduced to the solution of a pair of dual series equationsinvolving the unknown angle
of separation, the solution of which may be carried out numerically by means of an expansion
in asmall parameter, e = a/b, representing the ratio between the inner and outer radii of the
tube. This permits the study of the case where the outer radius tends to infinity.

Let us introduce a set of cylindrical coordinates (r, @, z) with the z-axis coinciding with
the axis of the inclusion, the force acting along the polar axis & = 0. In what follows, we
briefly quote the fundamental equationsto be used in the sequel. The same notationsasin [4]
and [5] will be used.

(i) The stress components are expressed in terms of the stress function @ as follows

LU R R NE "
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(i) Strain-stressrelations:
2Ger = (L—v)o, —voy, 2Gepg = (L—v)oy —vo,, 2Gey = Trp, 2
where G and v are the coefficient of rigidity and Poisson’sratio, respectively.
(iii) Strain-displacement relations:
_ Ouy 1 (0uy ~10u,  Oup up
frr—a—ra 600—;(@‘“%), ZETQ_FBH-I-W_?' ©)

(iv) Boundary conditions:
If we assume a frictionless contact between the two bodies and arigidly clamped outer
surface of the tube, then the boundary conditions are as follows

or(a,0) = ol.(a,0), 0<0<m, 4
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70(a,0) = 7l9(a,0) =0, 0<60 <, (5)
Ur‘(aag) = u;(a,G), 0<0<n, (6)
O'r(aao) =0, n < 0<m, (7)
ur(b,0) = 0, 0<H<m, (8
ug(b,0) = 0, 0<O6<m, 9

where the region of contact is —n < 6 < n, and the quantities referring to the inclusion
are denoted by a‘dash’, while the undashed quantities are for the tube.

The boundary conditions must be completed with the condition of univaluedness of the
displacement

ug(r,0) =ug(r,m) =0, 0<r <hbh. (10)

Also, the following global equilibrium condition should hold for both the inclusion and
the tube:

F = —2/ (o cosh — 7,9 SING)r db. (12)
0

From symmetry considerations, the stressfunctions ®, &' may be shown to havethe following
expansions:
aF

¥ = g (1 2/)p10gpcost —2(1— /)0 sind]

o
+App® + Ajp®cost + > [Ap" 2 + B} p"™] cosn, (12)

n=2

aF
= ——
4r(l—v)
+A0p2 + [Alps + Dlpfl] cosf

[(1—2v)plogpcoshd — 2(1 — v)ph sind]

o0
+Bologp +a? > [Anp™ 2 + Bpp™ + Cop™ "2 + Dyp~"] oSN, (13)
n=2
wherep =r/aand {A} },{B.},{An},{Bn},{Cn},{D,} arecoefficientsto be determined.
The following expressions for the stresses and displacementsin the two media, satisfying
(1)—(5) and (8)«11), are finally obtained:
(i) For theinclusion (0 < p < 1)

1 Ej cosf .
o = 3Fot gyl -2+ @=2) ]
1 oo
—3 Z [(n — 2)p" —np" ?]|E, cosn#, (14)
n=2
1 (1—2v")E; cosf o, 1 & N
I = _ 1 - n _ n—2
op = 2Eo + TE) Bp—p ]+ 5 ngz[(n +2)p" — np" “|E, cosnd, (15)
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1—2/)E;sinf 1y L& - :
tp=t 4(11,,1/) p=p7+ 5 X nl" — o) E, sinnd, (16)

, 1 2G"5 E; cosf
26'Yr = Z(1—20) Eop+ 2 cosf+ 22227 11— 20') (1—4') pP+2(3—4) |
G " 2( v')Eop+ _— cos +8(1—u’)[( V') (1-4v")p"+2(3—4v") log p]
1 X [n—2+4 n
=5 s E,
pa { — ] p — lp } cosnd, @an
ity _ _2G'0 o BASNG o s a2 2 23— 4
2G L= ; Sm0+8(1—7/’)[(1 20")(5— 4" )p* — 2 —2(3—4v")logp]
n+4—4/ P n n_l} .
E_ { —— ] p— E, sinnd. (18)

(i) For thetube (1 < p < 1/¢)
1 E4+1-2w)p2

A e
Droosd [ 2000 =2 g U200
3 [(n+1)(n —2)App" + n(n — 1)B,p" 2

+(nn: 2— 1)(n+2)Cpp ™ +n(n+1)D,p ™ ? cosnd, (19)
oy = %Eo 62(1 Elz,_,)zj_)epz_z

| et SR

+ i[(n +1)(n +2)Aup" + n(n — 1) By, p" 2

+(nn: 2— 1)(n —2)Crp™" 4+ n(n+ 1)D,p~""?] cosnd, (20)

; 2 4 2

o DA [U S0 2 sy gy, U2,

+ Z n+1) A"+ (n—1)Bpp" 2= (n—1)Cpp "
—(n-l—l) np "2 sinnd, (22)

ZG% 1 1-2v

2 -1
== 12— pYE
a 21—27/—1—62[6'0 P~ 1Fo
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F; cost 1072 + (1 - 4U)F2p2 —TI'3
8(1—1) lz(s 4v)logep + B—dv) + ¢

o
- Z [(n— 24 4v)App™ Tt + nB,p" 1

n=2
—(n+2—4)Crp "t —nD,p " cosnb, (22)
ug _ Epsing T1p 2+ (5— 4v)Tpp? + T3
ZGa = 311 2(3—4v)logep — 2+ B+
o0
+ Z [(n+4— ) A"t + 0B p" 1+ (n — 44 4)C,p "1
(23)

n=2
+nDyp " sinng,
where § is the rigid-body displacement of the inclusion in the force direction and the coeffi-

cients are interrelated by the relations:
M =[— (1-2)(3—4)], I2=€[(1—2v)e®+1],

3= (1—4v) —2(1—2v)e? + €*,

_F A , _ (1=20)a?
El__ga AO_Za Ex, Al—m 1
a’e’Ey s — a’By (1 —2v)e* 4 €
LT 81-v) B—d)+

b= i+
a’B1 (1-—20)(3—4v) — €

1-2v Eo
By= —— = 270 Dy = —
T 1 22" 2 1T 781—v) (B-4dv)+é

andfor (n > 2):
" 2(n+ 1) " 2(n—-1)

(n+1)(n—2)A, +n(n—1)B, + (n —1)(n+ 2)C, + n(n+ 1)D,, = —E,,
nin+ 1A, +n(n—21)B, —n(n—-21)C, —n(n+1)D, =0,
(n—2+4w)e " 1A, + net "B, — (n+2— )" 1C, —ne" D, =0,
(n+4-— 4V)E_n_1An +net™"B, + (n—4+ 4y)en_lCn +ne"tD, =0.

The boundary conditions (6) and (7) give the following dua series equations in the

unknowns Eo, E,(n > 2),§ and n:

n<6<m, (24)

1 (o)
>Eo + HZ:lEn cosnf = 0,
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%koEo + = —ad' cosh, 0<0<n, (25)
n= 2
where
. _ Ko _ K-S _ Kz G e
T2k, T T2k, 0 T2k, 0T uKy YT G
B W (1—2)(1-e?)
Ko—a/(l — 2v ) + (1 2,/) + 2 '
Ki=a(l-2") — (1 - 2v),
Ko=a(l-V)+(1-v),
Ks=al! + I,
I 03— M)t — 41— 2v)e+ (1—-2v)(3— )+ 1— 4 _ (83—4v)loge
- 8(1—v)[(3—4v) + €] 41-v)
, (1-2)1-4)
L= 8(1—v") ’
it i1 2120 o (1 BAE20O2T)
301+ 2(1—v)(1—2v)]  48[1+2(1—v)(1—2v)]3
+2<1+ [1+ 2_4} ) 48+ é_4£2 )]>é
18+ 16[1+2(1—v)(1—2v)]  192[1+2(1— v)(1— 2v)]?
+203—m0— 34 (3— 4v)2
— VUV — LV 4
_unu+i§;4$g 2)]>e°+0k%},
&:%%%?é{ag+a1—mu—zmy-mé
.\ (Q 29+ 8(13—_12 751 - 2u)]2> 4y 0(66)} |
a:%%%?é&qz+u—uxr—&ﬂ—e&ﬁuxén
$5= 2=V 8raon 4 g1 - 1) (1 — 20)] + O(A)1,

S,=0(" ), n>6.
3. Solution of the dual seriesequations

To find the approximate solution of the dual series equations (24) and (25), we make use of
the method suggested in [5]. Applying the operator (D + D~1) on equation (25), where

=3 b= [ s
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we get

—}koEOQ—i—ZEn <1—K—n> snnf=0, 0<60<n. (26)
2 - n

Equations (24) and (26) are sufficient to determine al the unknowns. Choosing any integer
M > 1, we can rewrite Eqg. (26) in the truncated form

1 < . Ml
——koE00+ZEnsmn0=Els|n0+ Z H—Emsnme, 0<H<n. (27
2 n=1 m=2 m

Thus, the M -th order approximate solution of the dual series equations (24) and (27) will be

M+1
En = anlEl + Z HmanmEma n = 07 17 27 LR (28)

m=2

where {a;;} isthe solution of the pair of dual series equations

1 > . sinm#@
—koaomf + 3 apm SNI=——2 0 <0 <1,
2 = m
o (29)
1
—agm + Z Gnm COSNO=0, n <60 <m,

2

n=1

whichisgivenin[5].

Equations (28), for n running over the set of values 1,2, ..., M + 1, formaset of (M + 1)
homogeneous linear, algebraic equations in E,(1 < n < M + 1). Since E; # 0, the
determinant of the matrix of this system of equations must vanish, from which we can
determine the angle n for the M -th order of approximation. We then calculate the values of
the coefficients Fo and {F,, }(n > 2) asin [5]. The parameter §' may be determined from
Equation (25) with & = 0.

4, Numerical results and discussion

Some numerical calculations for the angle of contact n were carried out. Each of the Figures
2—4 showsthe curves of theanglen against the physical parameter z = a/ (a+ 1) for different
values of the geometrical parameter ¢ and for definite values of v and /.

For the sake of comparison with the results of [5], we have plotted in Figures 5-8 the
difference An between the actual angle and the corresponding one for the case ¢ = 0 (case
treated in [5]).

The results show that:

1. When G’ <« G, the angle of contact isindependent of .

2. Astheparameter e increases, i.e. asthe tube becomesthinner, the angle of contact increases
monotonically.

3. When v/ = 0.5, i.e. when the material of the inclusion is incompressible, the difference
An isamost constant, aslong asa < 4.

4. Fore = a/b < 0.3, thedifference An in general does not exceed 10°, whatever the values
of v,v/ and .

5. When a — oo, i.e. when G’ <« G, An — 0, whatever the values of v, ' and e.
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Figure 2. Values of n for v = 0.0, v/ = 0.0.

4 °
96

94
g7’

90

Illlll:lllllll:}'l

8g
86 =

0

84

o
g2 P N
0 0.2
Figure 3. Valuesof n forv = 0.1, ' = 0.1.

L | 1 1 1 | 1 1 Il | 1 1 Il Z
0.4 0.6 0.8 1

Aann: 400 +aov: 17/ 027/ 10009 1N E1- v =

O o o o o o
O - N W &~ WU

O o o o oo
O - N > wu



concentrated force 81

7.
4°E-.
93°E
FE
91’
U
= | T . e
wE T e o
L = L £ - 0.3
8602_ ........................................................... E=0.2
8505—. ------------------------- e -o0
s — € =0.0
83’ E= l I R B Z

0 0.2 0.4 0.6 0.8 1

Figure 4. Valuesof n for v = 0.2,/ = 0.2,

7 og°
96
94
52t - 0.5
- 0.4
S0 - 0.3
- 0.2
Bg - 0.1
i - 0.0
866 L L . | 1 1 L ] L I 1 | ! ! ! | L L ! Z
0 0.2 0.4 0.6 0.8 1

Figure5. Values of  for v = 0.0, v/ = 0.3.

annt A00 +av: 17/ N2/ 1009 1N E1 v E- n O



82 Hassan A.Z. Hassan

% 150°

170
160
150
140
130
120
110
100

a

90

I]IIIlIII|l|I|||1|III|III|I1I|III

]| N E—
0 0.2

Figure 6. Values of n for v = 0.0, v/ = 0.5.
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