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Abstract. A two-dimensional problem is investigated on the action of a concentrated force applied to the axis of
a circular cylindrical, elastic inclusion embedded in an elastic thick-walled tube. This is a generalization of an
indentation problem in infinite space, previously studied by Noble and Hussain [4] and revised by Omar and Hassan
[5]. The problem is solved using a fast numerical approximation technique and numerical results are presented that
allow us to evaluate the angle of contact and to establish a comparison with the case of embedding in an infinite
space.

1. Introduction

Among the static problems of the Theory of Elasticity that have numerous applications in
Engineering, the indentation problem is one of the most interesting. Due to its complexity,
this problem can be solved exactly only in very few special cases and numerically in general
cases [1]. The main difficulty in dealing with such problems arises from the fact that the
contact region is not known a priori. For cylindrical regions of simple geometry, this amounts
to saying that the contact angle is among the unknowns of the problem. Special methods
were put forward to deal with, and to solve indentation problems ([2], and the literature cited
therein), [3].

In their paper [4], Noble and Hussain reduce the problem of the inclusion of an infinite
circular cylinder in an infinite space to that of solving an airfoil integral equation, under the
constraint that the elastic parameters of the media satisfy a certain relation. The same problem
was treated by Omar and Hassan [5] who used a simpler technique to solve the dual series
equations to which the problem was reduced in the general case. They showed, in particular,
that sufficiently accurate results may be obtained from the first few iterations of their solution
without need to transform to the integral equation.

The problem is solved following the same technique as used in ]5] and numerical results are
given and discussed for the angle of contact between the inclusion and the tube. Comparison
is established with the case of embedding in an infinite space. In particular, it is shown that
the present results are the same as the corresponding ones in [5] when the shear modulus of
the inclusion is much smaller than that of the outer medium.

2. Formulation of the problem

An infinite, isotropic, elastic circular thick-walled tube of radii a, b(a < b) has an inclusion
in the form of an infinite circular cylinder of radius a of another isotropic elastic material
(see Fig. 1). A concentrated force F per unit length acts on the axis of the cylinder and
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Figure 1. Geometry of the problem.

perpendicular to it. Accordingly, a separation region is established in the stressed medium,
the end points of which need to be determined. It is well known that this problem reduces to
the solution of a biharmonic equation for the stress function under proper conditions. This is
further reduced to the solution of a pair of dual series equations involving the unknown angle
of separation, the solution of which may be carried out numerically by means of an expansion
in a small parameter, � = a=b, representing the ratio between the inner and outer radii of the
tube. This permits the study of the case where the outer radius tends to infinity.

Let us introduce a set of cylindrical coordinates (r; �; z) with the z-axis coinciding with
the axis of the inclusion, the force acting along the polar axis � = 0. In what follows, we
briefly quote the fundamental equations to be used in the sequel. The same notations as in [4]
and [5] will be used.

(i) The stress components are expressed in terms of the stress function � as follows
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(ii) Strain-stress relations:

2G�rr = (1� �)�r � ���; 2G��� = (1� �)�� � ��r; 2G�r� = �r�; (2)

where G and � are the coefficient of rigidity and Poisson’s ratio, respectively.
(iii) Strain-displacement relations:
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(iv) Boundary conditions:
If we assume a frictionless contact between the two bodies and a rigidly clamped outer
surface of the tube, then the boundary conditions are as follows

�r(a; �) = �
0

r
(a; �); 0 � � � �; (4)
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�r�(a; �) = �
0

r�
(a; �) = 0; 0 � � � �; (5)

ur(a; �) = u
0

r
(a; �); 0 � � � �; (6)

�r(a; �) = 0; � � � � �; (7)

ur(b; �) = 0; 0 � � � �; (8)

u�(b; �) = 0; 0 � � � �; (9)

where the region of contact is �� � � � �, and the quantities referring to the inclusion
are denoted by a ‘dash’, while the undashed quantities are for the tube.
The boundary conditions must be completed with the condition of univaluedness of the
displacement

u�(r; 0) = u�(r; �) = 0; 0 � r � b: (10)

Also, the following global equilibrium condition should hold for both the inclusion and
the tube:

F = �2
Z
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From symmetry considerations, the stress functions�;�0 may be shown to have the following
expansions:
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where � = r=a and fA0
n
g; fB

0

n
g; fAng; fBng; fCng; fDng are coefficients to be determined.

The following expressions for the stresses and displacements in the two media, satisfying
(1)–(5) and (8)–(11), are finally obtained:
(i) For the inclusion (0 � � � 1)
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(ii) For the tube (1 � � � 1=�)
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where � is the rigid-body displacement of the inclusion in the force direction and the coeffi-
cients are interrelated by the relations:
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The boundary conditions (6) and (7) give the following dual series equations in the
unknowns E0; En(n � 2); � and �:
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3. Solution of the dual series equations

To find the approximate solution of the dual series equations (24) and (25), we make use of
the method suggested in [5]. Applying the operator (D +D

�1) on equation (25), where
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we get
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Equations (24) and (26) are sufficient to determine all the unknowns. Choosing any integer
M � 1, we can rewrite Eq. (26) in the truncated form
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Thus, the M -th order approximate solution of the dual series equations (24) and (27) will be
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�manmEm; n = 0; 1; 2; . . . ; (28)

where faijg is the solution of the pair of dual series equations
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1
2
a0m +
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which is given in [5].
Equations (28), for n running over the set of values 1; 2; . . . ;M + 1, form a set of (M + 1)

homogeneous linear, algebraic equations in En(1 � n � M + 1). Since E1 6= 0, the
determinant of the matrix of this system of equations must vanish, from which we can
determine the angle � for the M -th order of approximation. We then calculate the values of
the coefficients E0 and fEng(n � 2) as in [5]. The parameter �0 may be determined from
Equation (25) with � = 0.

4. Numerical results and discussion

Some numerical calculations for the angle of contact � were carried out. Each of the Figures
2–4 shows the curves of the angle � against the physical parameter z = �=(�+1) for different
values of the geometrical parameter � and for definite values of � and � 0.

For the sake of comparison with the results of [5], we have plotted in Figures 5–8 the
difference �� between the actual angle and the corresponding one for the case � = 0 (case
treated in [5]).

The results show that:
1. When G0

� G, the angle of contact is independent of �.
2. As the parameter � increases, i.e. as the tube becomes thinner, the angle of contact increases

monotonically.
3. When � 0 = 0:5, i.e. when the material of the inclusion is incompressible, the difference
�� is almost constant, as long as � � 4.

4. For � = a=b � 0:3, the difference�� in general does not exceed 10�, whatever the values
of �; � 0 and �.

5. When �!1, i.e. when G0
� G, �� ! 0, whatever the values of �; � 0 and �.
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Figure 2. Values of � for � = 0:0, �0
= 0:0.

Figure 3. Values of � for � = 0:1, �0
= 0:1.
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Figure 4. Values of � for � = 0:2, �0
= 0:2.

Figure 5. Values of � for � = 0:0, �0
= 0:3.
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Figure 6. Values of � for � = 0:0, �0
= 0:5.

Figure 7. Values of � for � = 0:4, �0
= 0:5.
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Figure 8. Values of�� for � = 0:0, �0
= 0:0.

Figure 9. Values of�� for � = 0:1, �0
= 0:1.
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Figure 10. Values of�� for � = 0:2, �0
= 0:2.

Figure 11. Values of�� for � = 0:0, �0
= 0:3.
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Figure 12. Values of�� for � = 0:0, �0
= 0:5.

Figure 13. Values of�� for � = 0:4, �0
= 0:5.
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